Reasoning-focused Question Answering (QA) has advanced rapidly with Large Language Models (LLMs), yet high-quality benchmarks for low-resource languages remain scarce. Persian, spoken by roughly 130 million people, lacks a comprehensive open-domain resource for evaluating reasoning-capable QA systems. We introduce PARSE, the first open-domain Persian reasoning QA benchmark, containing 10,800 questions across Boolean, multiple-choice, and factoid formats, with diverse reasoning types, difficulty levels, and answer structures. The benchmark is built via a controlled LLM-based generation pipeline and validated through human evaluation. We also ensure linguistic and factual quality through multi-stage filtering, annotation, and consistency checks. We benchmark multilingual and Persian LLMs under multiple prompting strategies and show that Persian prompts and structured prompting (CoT for Boolean/multiple-choice; few-shot for factoid) improve performance. Fine-tuning further boosts results, especially for Persian-specialized models. These findings highlight how PARSE supports both fair comparison and practical model adaptation. PARSE fills a critical gap in Persian QA research and provides a strong foundation for developing and evaluating reasoning-capable LLMs in low-resource settings.
Multimodal Large Language Models (MLLMs) have achieved remarkable success in open-vocabulary perceptual tasks, yet their ability to solve complex cognitive problems remains limited, especially when visual details are abstract and require visual memory. Current approaches primarily scale Chain-of-Thought (CoT) reasoning in the text space, even when language alone is insufficient for clear and structured reasoning, and largely neglect visual reasoning mechanisms analogous to the human visuospatial sketchpad and visual imagery. To mitigate this deficiency, we introduce Cognitive Supersensing, a novel training paradigm that endows MLLMs with human-like visual imagery capabilities by integrating a Latent Visual Imagery Prediction (LVIP) head that jointly learns sequences of visual cognitive latent embeddings and aligns them with the answer, thereby forming vision-based internal reasoning chains. We further introduce a reinforcement learning stage that optimizes text reasoning paths based on this grounded visual latent. To evaluate the cognitive capabilities of MLLMs, we present CogSense-Bench, a comprehensive visual question answering (VQA) benchmark assessing five cognitive dimensions. Extensive experiments demonstrate that MLLMs trained with Cognitive Supersensing significantly outperform state-of-the-art baselines on CogSense-Bench and exhibit superior generalization on out-of-domain mathematics and science VQA benchmarks, suggesting that internal visual imagery is potentially key to bridging the gap between perceptual recognition and cognitive understanding. We will open-source the CogSense-Bench and our model weights.
Arabic remains one of the most underrepresented languages in natural language processing research, particularly in medical applications, due to the limited availability of open-source data and benchmarks. The lack of resources hinders efforts to evaluate and advance the multilingual capabilities of Large Language Models (LLMs). In this paper, we introduce MedAraBench, a large-scale dataset consisting of Arabic multiple-choice question-answer pairs across various medical specialties. We constructed the dataset by manually digitizing a large repository of academic materials created by medical professionals in the Arabic-speaking region. We then conducted extensive preprocessing and split the dataset into training and test sets to support future research efforts in the area. To assess the quality of the data, we adopted two frameworks, namely expert human evaluation and LLM-as-a-judge. Our dataset is diverse and of high quality, spanning 19 specialties and five difficulty levels. For benchmarking purposes, we assessed the performance of eight state-of-the-art open-source and proprietary models, such as GPT-5, Gemini 2.0 Flash, and Claude 4-Sonnet. Our findings highlight the need for further domain-specific enhancements. We release the dataset and evaluation scripts to broaden the diversity of medical data benchmarks, expand the scope of evaluation suites for LLMs, and enhance the multilingual capabilities of models for deployment in clinical settings.
Existing Tool-Integrated Reasoning (TIR) models have effectively extended the question-answering capabilities of LLMs by incorporating external tools. However, real-world scenarios present numerous open-ended problems where fixed tools often fail to meet task requirements. Furthermore, the lack of self-optimization mechanisms means that erroneous tool outputs can mislead the LLM's responses. Additionally, the construction of existing tools entails significant manual effort, which consequently constrains their applicability. Recognizing that the reasoning traces of LLMs encapsulate implicit problem-solving capabilities, we propose UCT, a novel training-free framework that transforms agents from tool users to tool creators. This approach harvests reasoning experiences and distills them into reusable assets. This method transforms the agent from a mere tool user into a tool creator, enabling adaptive tool creation and self-updating during the inference process. We also introduce a memory consolidation mechanism to maintain the tool library, ensuring high reusability of retained experiential memory for subsequent reasoning tasks. This novel automated tool construction paradigm continuously improves tool quality during reasoning, allowing the overall agent system to progress without additional training. Extensive experiments demonstrate that our method serves as a novel paradigm for enhancing the capabilities of TIR models. In particular, the significant performance gains achieved +20.86%$\uparrow$ and +23.04%$\uparrow$ on benchmarks across multi-domain mathematical and scientific reasoning tasks validate the self-evolving capability of the agent.
Large Language Models (LLMs) are commonly used in Question Answering (QA) settings, increasingly in the natural sciences if not science at large. Reliable Uncertainty Quantification (UQ) is critical for the trustworthy uptake of generated answers. Existing UQ approaches remain weakly validated in scientific QA, a domain relying on fact-retrieval and reasoning capabilities. We introduce the first large-scale benchmark for evaluating UQ metrics in reasoning-demanding QA studying calibration of UQ methods, providing an extensible open-source framework to reproducibly assess calibration. Our study spans up to 20 large language models of base, instruction-tuned and reasoning variants. Our analysis covers seven scientific QA datasets, including both multiple-choice and arithmetic question answering tasks, using prompting to emulate an open question answering setting. We evaluate and compare methods representative of prominent approaches on a total of 685,000 long-form responses, spanning different reasoning complexities representative of domain-specific tasks. At the token level, we find that instruction tuning induces strong probability mass polarization, reducing the reliability of token-level confidences as estimates of uncertainty. Models further fine-tuned for reasoning are exposed to the same effect, but the reasoning process appears to mitigate it depending on the provider. At the sequence level, we show that verbalized approaches are systematically biased and poorly correlated with correctness, while answer frequency (consistency across samples) yields the most reliable calibration. In the wake of our analysis, we study and report the misleading effect of relying exclusively on ECE as a sole measure for judging performance of UQ methods on benchmark datasets. Our findings expose critical limitations of current UQ methods for LLMs and standard practices in benchmarking thereof.
Municipal meeting minutes are official documents of local governance, exhibiting heterogeneous formats and writing styles. Effective information retrieval (IR) requires identifying metadata such as meeting number, date, location, participants, and start/end times, elements that are rarely standardized or easy to extract automatically. Existing named entity recognition (NER) models are ill-suited to this task, as they are not adapted to such domain-specific categories. In this paper, we propose a two-stage pipeline for metadata extraction from municipal minutes. First, a question answering (QA) model identifies the opening and closing text segments containing metadata. Transformer-based models (BERTimbau and XLM-RoBERTa with and without a CRF layer) are then applied for fine-grained entity extraction and enhanced through deslexicalization. To evaluate our proposed pipeline, we benchmark both open-weight (Phi) and closed-weight (Gemini) LLMs, assessing predictive performance, inference cost, and carbon footprint. Our results demonstrate strong in-domain performance, better than larger general-purpose LLMs. However, cross-municipality evaluation reveals reduced generalization reflecting the variability and linguistic complexity of municipal records. This work establishes the first benchmark for metadata extraction from municipal meeting minutes, providing a solid foundation for future research in this domain.
Open-ended question answering (QA) evaluates a model's ability to perform contextualized reasoning beyond factual recall. This challenge is especially acute in practice-based domains, where knowledge is procedural and grounded in professional judgment, while most existing LLM benchmarks depend on pre-existing human exam datasets that are often unavailable in such settings. We introduce a framework for automated benchmark generation from expert-authored guidelines informed by Bloom's Taxonomy. It converts expert practices into implicit violation-based scenarios and expands them into auto-graded multiple-choice questions (MCQs) and multi-turn dialogues across four cognitive levels, enabling deterministic, reproducible, and scalable evaluation. Applied to three applied domains: teaching, dietetics, and caregiving, we find differences between model and human-like reasoning: LLMs sometimes perform relatively better on higher-order reasoning (Analyze) but fail more frequently on lower-level items (Remember). We produce large-scale, psychometrically informed benchmarks that surface these non-intuitive model behaviors and enable evaluation of contextualized reasoning in real-world settings.
Time series data are integral to critical applications across domains such as finance, healthcare, transportation, and environmental science. While recent work has begun to explore multi-task time series question answering (QA), current benchmarks remain limited to forecasting and anomaly detection tasks. We introduce TSAQA, a novel unified benchmark designed to broaden task coverage and evaluate diverse temporal analysis capabilities. TSAQA integrates six diverse tasks under a single framework ranging from conventional analysis, including anomaly detection and classification, to advanced analysis, such as characterization, comparison, data transformation, and temporal relationship analysis. Spanning 210k samples across 13 domains, the dataset employs diverse formats, including true-or-false (TF), multiple-choice (MC), and a novel puzzling (PZ), to comprehensively assess time series analysis. Zero-shot evaluation demonstrates that these tasks are challenging for current Large Language Models (LLMs): the best-performing commercial LLM, Gemini-2.5-Flash, achieves an average score of only 65.08. Although instruction tuning boosts open-source performance: the best-performing open-source model, LLaMA-3.1-8B, shows significant room for improvement, highlighting the complexity of temporal analysis for LLMs.
Multimodal Large Language Models (MLLMs) are a major focus of recent AI research. However, most prior work focuses on static image understanding, while their ability to process sequential audio-video data remains underexplored. This gap highlights the need for a high-quality benchmark to systematically evaluate MLLM performance in a real-world setting. We introduce SONIC-O1, a comprehensive, fully human-verified benchmark spanning 13 real-world conversational domains with 4,958 annotations and demographic metadata. SONIC-O1 evaluates MLLMs on key tasks, including open-ended summarization, multiple-choice question (MCQ) answering, and temporal localization with supporting rationales (reasoning). Experiments on closed- and open-source models reveal limitations. While the performance gap in MCQ accuracy between two model families is relatively small, we observe a substantial 22.6% performance difference in temporal localization between the best performing closed-source and open-source models. Performance further degrades across demographic groups, indicating persistent disparities in model behavior. Overall, SONIC-O1 provides an open evaluation suite for temporally grounded and socially robust multimodal understanding. We release SONIC-O1 for reproducibility and research: Project page: https://vectorinstitute.github.io/sonic-o1/ Dataset: https://huggingface.co/datasets/vector-institute/sonic-o1 Github: https://github.com/vectorinstitute/sonic-o1 Leaderboard: https://huggingface.co/spaces/vector-institute/sonic-o1-leaderboard
Most reinforcement learning (RL) methods for training large language models (LLMs) require ground-truth labels or task-specific verifiers, limiting scalability when correctness is ambiguous or expensive to obtain. We introduce Reinforcement Learning from Meta-Evaluation (RLME), which optimizes a generator using reward derived from an evaluator's answers to natural-language meta-questions (e.g., "Is the answer correct?" or "Is the reasoning logically consistent?"). RLME treats the evaluator's probability of a positive judgment as a reward and updates the generator via group-relative policy optimization, enabling learning without labels. Across a suite of experiments, we show that RLME achieves accuracy and sample efficiency comparable to label-based training, enables controllable trade-offs among multiple objectives, steers models toward reliable reasoning patterns rather than post-hoc rationalization, and generalizes to open-domain settings where ground-truth labels are unavailable, broadening the domains in which LLMs may be trained with RL.